Pathophysiology of diabetic nephropathy

Pathophysiology of diabetic nephropathy

Authors

DOI:

https://doi.org/10.5281/zenodo.10444772

Keywords:

Diabetic nephropathy, hyperglycemia, pathophysiology

Abstract

Glomerular basement membrane thickening is common in patients with long-standing diabetes, with or without nephropathy. In the following period, there is a correlation between glomerular basement membrane thickness and fractional mesangial volumes and albuminuria. The mechanisms underlying the formation of albuminuria begin with expansion of the glomerular basement membrane (GBM) with deposition of type IV collagen and reduction of negatively charged heparin sulfate proteoglycan. One of the earliest cellular changes in diabetes is mesangial and tubular cell hypertrophy. Hyperglycemia causes hypertrophy in the kidney by stimulating growth factors such as insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), VEGF, TGF-β and Ang II. However, antagonizing TGF-β in diabetic patients did not provide beneficial effects on renal function or proteinuria. Pathological features of diabetic nephropathy (DN) are mesangial expansion, nodular diabetic glomerulosclerosis (acellular Kimmelstiel-Wilson lesion), and diffuse glomerulosclerosis. Kidney structure is heterogeneous in diabetic patients; Only a subset of patients have typical diabetic glomerulopathy, whereas others have tubulointerstitial and vascular lesions that are much more advanced than glomerular lesions. There are features suggestive of normal or near-normal kidney structure and even glomerular ischemia. Treatment of diabetic animals with an ACE inhibitor attenuates p27 Kip1 and reduces renal hypertrophy.

References

Chen S, Khoury C, Ziyadeh FN. Pathophysiology and pathogenesis of diabetic nephropathy. Seldin and Giebisch’s The Kidney: Physiology and Pathophysiology. 2012:2605-2632. doi:10.1016/B978-0-12-381462-3.00078-1

Hemmelgarn BR, Manns BJ, Lloyd A, et al. Relation between kidney function, proteinuria, and adverse outcomes. JAMA. 2010;303(5):423-429. doi:10.1001/JAMA.2010.39

Li B, Yao J, Kawamura K, et al. Real-time observation of glomerular hemodynamic changes in diabetic rats: Effects of insulin and ARB. Kidney Int. 2004;66.

Freedman BI, Bostrom M, Daeihagh P, Bowden DW. Genetic factors in diabetic nephropathy. Depth Review Clin J Am Soc Nephrol. 2007;2:1306-1316. doi:10.2215/CJN.02560607

Fioretto P, Steffes MW, Brown DM, Mauer SM. An Overview of Renal Pathology in Insulin-dependent diabetes mellitus in relationship to altered glomerular hemodynamics. American Journal of Kidney Diseases. 1992;20(6):549-558. doi:10.1016/S0272-6386(12)70217-2

Tang S, Sharma K. Pathogenesis, Clinical Manifestations, and Natural History of Diabetic Kidney Disease. (Feehally J, Floege J, Tonelli M, Johnson RJ, eds.).; 2018.

Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest. 2014;124(6):2333-2340. doi:10.1172/JCI72271

Sharma K, RamachandraRao S, Qiu G, et al. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest. 2008;118(5):1645-1656. doi:10.1172/JCI32691

Jha JC, Thallas-Bonke V, Banal C, et al. Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy. Diabetologia. 2016;59(2):379-89. doi: 10.1007/s00125-015-3796-0

Voelker J, Berg PH, Sheetz M, et al. Anti-TGF-b1 antibody therapy in patients with diabetic nephropathy. J Am Soc Nephrol. 2017;28(3):953-962. doi: 10.1681/ASN.2015111230

Fioretto P, Steffes MW, Sutherland DER, Mauer M. Sequential renal biopsies in insulin-dependent diabetic patients: Structural factors associated with clinical progression. Kidney Int. 1995;48(6):1929-1935. doi:10.1038/KI.1995.493

Marshall SM. The podocyte: A major player in the development of diabetic nephropathy? Hormone and Metabolic Research. 2005;37(SUPPL. 1):9-16. doi:10.1055/S-2005-861397

Wolf G, Chen S, Ziyadeh FN. Perspectives in diabetes from the periphery of the glomerular capillary wall toward the center of disease podocyte ınjury comes of age in diabetic nephropathy. Diabetes, 2005;54:1626-1634.

W Tang SC, Han Yiu W. Innate immunity in diabetic kidney disease. Nat Rev Nephrol, 2020:206-222. doi:10.1038/s41581-019-0234-4

Lavoz C, Sánchez Matus Y, Orejudo M, et al. Interleukin-17A blockade reduces albuminuria and kidney injury in an accelerated model of diabetic nephropathy. Kidney Int. 2019;95(6):1418-1432. doi:10.1016/j.kint.2018.12.031

Cohen Tervaert TW, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556-563. doi:10.1681/ASN.2010010010

Wolf G, Schroeder R, Zahner G, Stahl RAK, Shankland SJ. High glucose-induced hypertrophy of mesangial cells requires p27Kip1, an inhibitor of cyclin-dependent kinases. Am J Pathol. 2001;158(3):1091. doi:10.1016/S0002-9440(10)64056-4

Sataranatarajan K, Mariappan MM, Myung JL, et al. Regulation of elongation phase of mRNA translation in diabetic nephropathy: Amelioration by rapamycin. Am J Pathol. 2007;171(6):1733. doi:10.2353/AJPATH.2007.070412

Mori H, Inoki K, Masutani K, et al. The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem Biophys Res Commun. 2009;384(4):471-475. doi:10.1016/j.bbrc.2009.04.136

Choo AY, Blenis J. Cell Cycle Not all substrates are treated equally: Implications for mTOR, rapamycin-resistance, and cancer therapy. Cell Cycle. 2009;8(4):567-572. doi:10.4161/cc.8.4.7659

Chen JK, Chen J, Thomas G, Kozma SC, Harris RC. S6 kinase 1 knockout inhibits uninephrectomy- or diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol. 2009;297(3):585-593. doi:10.1152/ajprenal.00186.2009

Yang Y, Wang J, Qin L, et al. Rapamycin prevents early steps of the development of diabetic nephropathy in rats. Am J Nephrol. 2007;27(5):495-502. doi:10.1159/000106782

Gilbert RE, et al. Vasoactive molecules and the kidney. 2016:325-353. Doi: 10.1016/B978-1-4160-6193-9.10012-0

Tangri N, Stevens LA, Griffith J, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA. 2011;305(15):1553-1559. doi:10.1001/JAMA.2011.451

Vargas SL, Toma I, Jung JK, Meer EJ, Peti-Peterdi J. Activation of the succinate receptor GPR91 in macula densa cells causes renin release. J Am Soc Nephrol. 2009;20(5):1002. doi:10.1681/ASN.2008070740

Cao Z, Cooper ME. Pathogenesis of diabetic nephropathy. Journal of Diabetes Investigation, 2011;2:243-247. doi:10.1111/j.2040-1124.2011.00131.x

Bonnet F, Cooper ME, Kawachi H, Allen TJ, Boner G, Cao Z. Irbesartan normalises the deficiency in glomerular nephrin expression in a model of diabetes and hypertension. Diabetologia. 2001;44(7):874-877. doi:10.1007/S001250100546

Pavenstädt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83(1):253-307. doi:10.1152/PHYSREV.00020.2002

Eyre J, Ioannou K, Grubb BD, et al. Statin-sensitive endocytosis of albumin by glomerular podocytes. Am J Physiol Renal Physiol. 2007;292(2):674-681. doi:10.1152/AJPRENAL.00272.2006

EI Christensen RNHB. Renal filtration, transport, and metabolism of albumin and albuminuria, in Seldin and Giebisch’s The Kidney. 2013.

Smithies O. Why the kidney glomerulus does not clog: A gel permeation/diffusion hypothesis of renal function. Proc Natl Acad Sci U S A. 2003;100(7):4108-4113. doi:10.1073/PNAS.0730776100

Sharma K, Ziyadeh FN. Renal hypertrophy is associated with upregulation of TGF-beta 1 gene expression in diabetic BB rat and NOD mouse. Am J Physiol. 1994;267(6 Pt 2):F1094-F1101. doi:10.1152/AJPRENAL.1994.267.6.F1094

Ziyadeh FN, Hoffman BB, Han DC, et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in db/db diabetic mice. Proc Natl Acad Sci U S A. 2000;97(14):8015-8020. doi:10.1073/PNAS.120055097

Ziyadeh FN. Mediators of diabetic renal disease: The case for TGF-as the major mediator. J Am Soc Nephrol. 2004;15 Suppl 1:S55-S57. doi:10.1097/01.ASN.0000093460.24823.5B

Chen S, Jim B, Ziyadeh FN. Podocyte-derived vascular endothelial growth factor mediates the stimulation of 3(IV) collagen production by transforming growth factor-1 in mouse podocytes. Diabetes. 2004;53(11):2939-2949. doi: 10.2337/diabetes.53.11.2939

Flyvbjerg A, Dagnaes-Hansen F, Frieda B, Schrijvers F, Tilton R. Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes. 2002;51(10):3090-3094. doi: 10.2337/diabetes.51.10.3090

Downloads

Published

2023-12-30

How to Cite

Yildiz, G., & Kaya, K. (2023). Pathophysiology of diabetic nephropathy: Pathophysiology of diabetic nephropathy. Rats, 1(2), 51–55. https://doi.org/10.5281/zenodo.10444772

Issue

Section

Articles